Non-Stokesian drag regime Stokes number







ψ


{\displaystyle \psi }

describes non-stokesian drag correction factor spherical particle






ψ
(


re


o


)
=


24


re


o







0




re


o







d


re








c

d


(


re





)


re










{\displaystyle \psi ({\text{re}}_{o})={\frac {24}{{\text{re}}_{o}}}\int _{0}^{{\text{re}}_{o}}{\frac {d{\text{re}}^{\prime }}{c_{d}({\text{re}}^{\prime }){\text{re}}^{\prime }}}}


considering limiting particle free-stream reynolds numbers,





re


o



0


{\displaystyle {\text{re}}_{o}\rightarrow 0}






c

d


(


re


o


)

24

/



re


o




{\displaystyle c_{d}({\text{re}}_{o})\rightarrow 24/{\text{re}}_{o}}

, therefore



ψ

1


{\displaystyle \psi \rightarrow 1}

. expected there correction factor unity in stokesian drag regime. wessel & righi evaluated



ψ


{\displaystyle \psi }






c

d


(

re

)


{\displaystyle c_{d}({\text{re}})}

empirical correlation drag on sphere schiller & naumann.






ψ
(


re


o


)
=



3
(


c




re


o


1

/

3



arctan

(


c




re


o


1

/

3


)
)



c

3

/

2




re


o







{\displaystyle \psi ({\text{re}}_{o})={\frac {3({\sqrt {c}}{\text{re}}_{o}^{1/3}-\arctan({\sqrt {c}}{\text{re}}_{o}^{1/3}))}{c^{3/2}{\text{re}}_{o}}}}


where constant



c
=
0.158


{\displaystyle c=0.158}

. conventional stokes number underestimate drag force large particle free-stream reynolds numbers. overestimating tendency particles depart fluid flow direction. lead errors in subsequent calculations or experimental comparisons.








Comments

Popular posts from this blog

History The Vandals

Causes Portuguese conquest of the Banda Oriental

Publications Daniel Kolak