Finite groups Schur orthogonality relations
1 finite groups
1.1 intrinsic statement
1.2 coordinates statement
1.3 example of permutation group on 3 objects
1.4 direct implications
finite groups
intrinsic statement
the space of complex-valued class functions of finite group g has natural inner product:
⟨
α
,
β
⟩
:=
1
|
g
|
∑
g
∈
g
α
(
g
)
β
(
g
)
¯
{\displaystyle \left\langle \alpha ,\beta \right\rangle :={\frac {1}{\left|g\right|}}\sum _{g\in g}\alpha (g){\overline {\beta (g)}}}
where
β
(
g
)
¯
{\displaystyle {\overline {\beta (g)}}}
means complex conjugate of value of
β
{\displaystyle \beta }
on g. respect inner product, irreducible characters form orthonormal basis space of class functions, , yields orthogonality relation rows of character table:
⟨
χ
i
,
χ
j
⟩
=
{
0
if
i
≠
j
,
1
if
i
=
j
.
{\displaystyle \left\langle \chi _{i},\chi _{j}\right\rangle ={\begin{cases}0&{\mbox{ if }}i\neq j,\\1&{\mbox{ if }}i=j.\end{cases}}}
for
g
,
h
∈
g
{\displaystyle g,h\in g}
orthogonality relation columns follows:
∑
χ
i
χ
i
(
g
)
χ
i
(
h
)
¯
=
{
|
c
g
(
g
)
|
,
if
g
,
h
are conjugate
0
otherwise.
{\displaystyle \sum _{\chi _{i}}\chi _{i}(g){\overline {\chi _{i}(h)}}={\begin{cases}\left|c_{g}(g)\right|,&{\mbox{ if }}g,h{\mbox{ conjugate }}\\0&{\mbox{ otherwise.}}\end{cases}}}
where sum on of irreducible characters
χ
i
{\displaystyle \chi _{i}}
of g , symbol
|
c
g
(
g
)
|
{\displaystyle \left|c_{g}(g)\right|}
denotes order of centralizer of
g
{\displaystyle g}
.
the orthogonality relations can aid many computations including:
decomposing unknown character linear combination of irreducible characters;
constructing complete character table when of irreducible characters known;
finding orders of centralizers of representatives of conjugacy classes of group; and
finding order of group.
coordinates statement
let
Γ
(
λ
)
(
r
)
m
n
{\displaystyle \gamma ^{(\lambda )}(r)_{mn}}
matrix element of irreducible matrix representation
Γ
(
λ
)
{\displaystyle \gamma ^{(\lambda )}}
of finite group
g
=
{
r
}
{\displaystyle g=\{r\}}
of order |g|, i.e., g has |g| elements. since can proven matrix representation of finite group equivalent unitary representation, assume
Γ
(
λ
)
{\displaystyle \gamma ^{(\lambda )}}
unitary:
∑
n
=
1
l
λ
Γ
(
λ
)
(
r
)
n
m
∗
Γ
(
λ
)
(
r
)
n
k
=
δ
m
k
all
r
∈
g
,
{\displaystyle \sum _{n=1}^{l_{\lambda }}\;\gamma ^{(\lambda )}(r)_{nm}^{*}\;\gamma ^{(\lambda )}(r)_{nk}=\delta _{mk}\quad {\hbox{for all}}\quad r\in g,}
where
l
λ
{\displaystyle l_{\lambda }}
(finite) dimension of irreducible representation
Γ
(
λ
)
{\displaystyle \gamma ^{(\lambda )}}
.
the orthogonality relations, valid matrix elements of irreducible representations, are:
∑
r
∈
g
|
g
|
Γ
(
λ
)
(
r
)
n
m
∗
Γ
(
μ
)
(
r
)
n
′
m
′
=
δ
λ
μ
δ
n
n
′
δ
m
m
′
|
g
|
l
λ
.
{\displaystyle \sum _{r\in g}^{|g|}\;\gamma ^{(\lambda )}(r)_{nm}^{*}\;\gamma ^{(\mu )}(r)_{n m }=\delta _{\lambda \mu }\delta _{nn }\delta _{mm }{\frac {|g|}{l_{\lambda }}}.}
here
Γ
(
λ
)
(
r
)
n
m
∗
{\displaystyle \gamma ^{(\lambda )}(r)_{nm}^{*}}
complex conjugate of
Γ
(
λ
)
(
r
)
n
m
{\displaystyle \gamma ^{(\lambda )}(r)_{nm}\,}
, sum on elements of g. kronecker delta
δ
λ
μ
{\displaystyle \delta _{\lambda \mu }}
unity if matrices in same irreducible representation
Γ
(
λ
)
=
Γ
(
μ
)
{\displaystyle \gamma ^{(\lambda )}=\gamma ^{(\mu )}}
. if
Γ
(
λ
)
{\displaystyle \gamma ^{(\lambda )}}
,
Γ
(
μ
)
{\displaystyle \gamma ^{(\mu )}}
non-equivalent zero. other 2 kronecker delta s state row , column indices must equal (
n
=
n
′
{\displaystyle n=n }
,
m
=
m
′
{\displaystyle m=m }
) in order obtain non-vanishing result. theorem known great (or grand) orthogonality theorem.
every group has identity representation (all group elements mapped onto real number 1). irreducible representation. great orthogonality relations imply that
∑
r
∈
g
|
g
|
Γ
(
μ
)
(
r
)
n
m
=
0
{\displaystyle \sum _{r\in g}^{|g|}\;\gamma ^{(\mu )}(r)_{nm}=0}
for
n
,
m
=
1
,
…
,
l
μ
{\displaystyle n,m=1,\ldots ,l_{\mu }}
, irreducible representation
Γ
(
μ
)
{\displaystyle \gamma ^{(\mu )}\,}
not equal identity representation.
example of permutation group on 3 objects
the 3! permutations of 3 objects form group of order 6, commonly denoted
s
3
{\displaystyle s_{3}}
(symmetric group). group isomorphic point group
c
3
v
{\displaystyle c_{3v}}
, consisting of threefold rotation axis , 3 vertical mirror planes. groups have 2-dimensional irreducible representation (l = 2). in case of
s
3
{\displaystyle s_{3}}
1 labels representation young tableau
λ
=
[
2
,
1
]
{\displaystyle \lambda =[2,1]}
, in case of
c
3
v
{\displaystyle c_{3v}}
1 writes
λ
=
e
{\displaystyle \lambda =e}
. in both cases representation consists of following 6 real matrices, each representing single group element:
(
1
0
0
1
)
(
1
0
0
−
1
)
(
−
1
2
3
2
3
2
1
2
)
(
−
1
2
−
3
2
−
3
2
1
2
)
(
−
1
2
3
2
−
3
2
−
1
2
)
(
−
1
2
−
3
2
3
2
−
1
2
)
{\displaystyle {\begin{pmatrix}1&0\\0&1\\\end{pmatrix}}\quad {\begin{pmatrix}1&0\\0&-1\\\end{pmatrix}}\quad {\begin{pmatrix}-{\frac {1}{2}}&{\frac {\sqrt {3}}{2}}\\{\frac {\sqrt {3}}{2}}&{\frac {1}{2}}\\\end{pmatrix}}\quad {\begin{pmatrix}-{\frac {1}{2}}&-{\frac {\sqrt {3}}{2}}\\-{\frac {\sqrt {3}}{2}}&{\frac {1}{2}}\\\end{pmatrix}}\quad {\begin{pmatrix}-{\frac {1}{2}}&{\frac {\sqrt {3}}{2}}\\-{\frac {\sqrt {3}}{2}}&-{\frac {1}{2}}\\\end{pmatrix}}\quad {\begin{pmatrix}-{\frac {1}{2}}&-{\frac {\sqrt {3}}{2}}\\{\frac {\sqrt {3}}{2}}&-{\frac {1}{2}}\\\end{pmatrix}}}
the normalization of (1,1) element:
∑
r
∈
g
6
Γ
(
r
)
11
∗
Γ
(
r
)
11
=
1
2
+
1
2
+
(
−
1
2
)
2
+
(
−
1
2
)
2
+
(
−
1
2
)
2
+
(
−
1
2
)
2
=
3.
{\displaystyle \sum _{r\in g}^{6}\;\gamma (r)_{11}^{*}\;\gamma (r)_{11}=1^{2}+1^{2}+\left(-{\tfrac {1}{2}}\right)^{2}+\left(-{\tfrac {1}{2}}\right)^{2}+\left(-{\tfrac {1}{2}}\right)^{2}+\left(-{\tfrac {1}{2}}\right)^{2}=3.}
in same manner 1 can show normalization of other matrix elements: (2,2), (1,2), , (2,1). orthogonality of (1,1) , (2,2) elements:
∑
r
∈
g
6
Γ
(
r
)
11
∗
Γ
(
r
)
22
=
1
2
+
(
1
)
(
−
1
)
+
(
−
1
2
)
(
1
2
)
+
(
−
1
2
)
(
1
2
)
+
(
−
1
2
)
2
+
(
−
1
2
)
2
=
0.
{\displaystyle \sum _{r\in g}^{6}\;\gamma (r)_{11}^{*}\;\gamma (r)_{22}=1^{2}+(1)(-1)+\left(-{\tfrac {1}{2}}\right)\left({\tfrac {1}{2}}\right)+\left(-{\tfrac {1}{2}}\right)\left({\tfrac {1}{2}}\right)+\left(-{\tfrac {1}{2}}\right)^{2}+\left(-{\tfrac {1}{2}}\right)^{2}=0.}
similar relations hold orthogonality of elements (1,1) , (1,2), etc. 1 verifies in example sums of corresponding matrix elements vanish because of orthogonality of given irreducible representation identity representation.
direct implications
the trace of matrix sum of diagonal matrix elements,
tr
(
Γ
(
r
)
)
=
∑
m
=
1
l
Γ
(
r
)
m
m
.
{\displaystyle \operatorname {tr} {\big (}\gamma (r){\big )}=\sum _{m=1}^{l}\gamma (r)_{mm}.}
the collection of traces character
χ
≡
{
tr
(
Γ
(
r
)
)
|
r
∈
g
}
{\displaystyle \chi \equiv \{\operatorname {tr} {\big (}\gamma (r){\big )}\;|\;r\in g\}}
of representation. 1 writes trace of matrix in irreducible representation character
χ
(
λ
)
{\displaystyle \chi ^{(\lambda )}}
χ
(
λ
)
(
r
)
≡
tr
(
Γ
(
λ
)
(
r
)
)
.
{\displaystyle \chi ^{(\lambda )}(r)\equiv \operatorname {tr} \left(\gamma ^{(\lambda )}(r)\right).}
in notation can write several character formulas:
∑
r
∈
g
|
g
|
χ
(
λ
)
(
r
)
∗
χ
(
μ
)
(
r
)
=
δ
λ
μ
|
g
|
,
{\displaystyle \sum _{r\in g}^{|g|}\chi ^{(\lambda )}(r)^{*}\,\chi ^{(\mu )}(r)=\delta _{\lambda \mu }|g|,}
which allows check whether or not representation irreducible. (the formula means lines in character table have orthogonal vectors.) and
∑
r
∈
g
|
g
|
χ
(
λ
)
(
r
)
∗
χ
(
r
)
=
n
(
λ
)
|
g
|
,
{\displaystyle \sum _{r\in g}^{|g|}\chi ^{(\lambda )}(r)^{*}\,\chi (r)=n^{(\lambda )}|g|,}
which helps determine how irreducible representation
Γ
(
λ
)
{\displaystyle \gamma ^{(\lambda )}}
contained within reducible representation
Γ
{\displaystyle \gamma \,}
character
χ
(
r
)
{\displaystyle \chi (r)}
.
for instance, if
n
(
λ
)
|
g
|
=
96
{\displaystyle n^{(\lambda )}\,|g|=96}
and order of group is
|
g
|
=
24
{\displaystyle |g|=24\,}
then number of times
Γ
(
λ
)
{\displaystyle \gamma ^{(\lambda )}\,}
contained within given reducible representation
Γ
{\displaystyle \gamma \,}
is
n
(
λ
)
=
4
.
{\displaystyle n^{(\lambda )}=4\,.}
see character theory more group characters.
Comments
Post a Comment