Application: low-pass filter Sallen–Key topology
1 application: low-pass filter
1.1 poles , zeros
1.2 design choices
1.3 example
1.4 input impedance
application: low-pass filter
figure 2: unity-gain low-pass filter implemented sallen–key topology
an example of unity-gain low-pass configuration shown in figure 2. operational amplifier used buffer here, although emitter follower effective. circuit equivalent generic case above with
z
1
=
r
1
,
z
2
=
r
2
,
z
3
=
1
s
c
1
,
z
4
=
1
s
c
2
.
{\displaystyle z_{1}=r_{1},\quad z_{2}=r_{2},\quad z_{3}={\frac {1}{sc_{1}}},\quad z_{4}={\frac {1}{sc_{2}}}.}
the transfer function second-order unity-gain low-pass filter is
h
(
s
)
=
ω
0
2
s
2
+
2
α
s
+
ω
0
2
,
{\displaystyle h(s)={\frac {\omega _{0}^{2}}{s^{2}+2\alpha s+\omega _{0}^{2}}},}
where undamped natural frequency
f
0
{\displaystyle f_{0}}
, attenuation
α
{\displaystyle \alpha }
, , q factor
q
{\displaystyle q}
(i.e., damping ratio
ζ
{\displaystyle \zeta }
) given by
ω
0
=
2
π
f
0
=
1
r
1
r
2
c
1
c
2
{\displaystyle \omega _{0}=2\pi f_{0}={\frac {1}{\sqrt {r_{1}r_{2}c_{1}c_{2}}}}}
and
2
α
=
2
ζ
ω
0
=
ω
0
q
=
1
c
1
(
1
r
1
+
1
r
2
)
=
1
c
1
(
r
1
+
r
2
r
1
r
2
)
.
{\displaystyle 2\alpha =2\zeta \omega _{0}={\frac {\omega _{0}}{q}}={\frac {1}{c_{1}}}\left({\frac {1}{r_{1}}}+{\frac {1}{r_{2}}}\right)={\frac {1}{c_{1}}}\left({\frac {r_{1}+r_{2}}{r_{1}r_{2}}}\right).}
so,
q
=
ω
0
2
α
=
r
1
r
2
c
1
c
2
c
2
(
r
1
+
r
2
)
.
{\displaystyle q={\frac {\omega _{0}}{2\alpha }}={\frac {\sqrt {r_{1}r_{2}c_{1}c_{2}}}{c_{2}\left(r_{1}+r_{2}\right)}}.}
the
q
{\displaystyle q}
factor determines height , width of peak of frequency response of filter. parameter increases, filter tend ring @ single resonant frequency near
f
0
{\displaystyle f_{0}}
(see lc filter related discussion).
poles , zeros
this transfer function has no (finite) zeros , 2 poles located in complex s-plane:
s
=
−
α
±
α
2
−
ω
0
2
.
{\displaystyle s=-\alpha \pm {\sqrt {\alpha ^{2}-\omega _{0}^{2}}}.}
there 2 zeros @ infinity (the transfer function goes 0 each of s terms in denominator).
design choices
a designer must choose
q
{\displaystyle q}
,
f
0
{\displaystyle f_{0}}
appropriate application.
q
{\displaystyle q}
value critical in determining eventual shape. example, second-order butterworth filter, has maximally flat passband frequency response, has
q
{\displaystyle q}
of
1
/
2
{\displaystyle 1/{\sqrt {2}}}
. comparison, value of
q
=
1
/
2
{\displaystyle q=1/2}
corresponds series cascade of 2 identical simple low-pass filters.
because there 2 parameters , 4 unknowns, design procedure typically fixes ratio between both resistors between capacitors. 1 possibility set ratio between
c
1
{\displaystyle c_{1}}
,
c
2
{\displaystyle c_{2}}
n
{\displaystyle n}
versus
1
/
n
{\displaystyle 1/n}
, ratio between
r
1
{\displaystyle r_{1}}
,
r
2
{\displaystyle r_{2}}
m
{\displaystyle m}
versus
1
/
m
{\displaystyle 1/m}
. so,
r
1
=
m
r
,
r
2
=
r
/
m
,
c
1
=
n
c
,
c
2
=
c
/
n
.
{\displaystyle {\begin{aligned}r_{1}&=mr,\\r_{2}&=r/m,\\c_{1}&=nc,\\c_{2}&=c/n.\end{aligned}}}
as result,
f
0
{\displaystyle f_{0}}
,
q
{\displaystyle q}
expressions reduced to
ω
0
=
2
π
f
0
=
1
r
c
{\displaystyle \omega _{0}=2\pi f_{0}={\frac {1}{rc}}}
and
q
=
m
n
m
2
+
1
.
{\displaystyle q={\frac {mn}{m^{2}+1}}.}
figure 3: low-pass filter, implemented sallen–key topology, fc = 15.9 khz , q = 0.5
starting more or less arbitrary choice e.g. c , n, appropriate values r , m can calculated in favor of desired
f
0
{\displaystyle f_{0}}
,
q
{\displaystyle q}
. in practice, choices of component values perform better others due non-idealities of real operational amplifiers. example, high resistor values increase circuit s noise production, whilst contributing dc offset voltage on output of opamps equipped bipolar input transistors.
example
for example, circuit in figure 3 has
f
0
=
15.9
khz
{\displaystyle f_{0}=15.9~{\text{khz}}}
,
q
=
0.5
{\displaystyle q=0.5}
. transfer function given by
h
(
s
)
=
1
1
+
c
2
(
r
1
+
r
2
)
⏟
2
ζ
ω
0
=
1
ω
0
q
s
+
c
1
c
2
r
1
r
2
⏟
1
ω
0
2
s
2
,
{\displaystyle h(s)={\frac {1}{1+\underbrace {c_{2}(r_{1}+r_{2})} _{{\frac {2\zeta }{\omega _{0}}}={\frac {1}{\omega _{0}q}}}s+\underbrace {c_{1}c_{2}r_{1}r_{2}} _{\frac {1}{\omega _{0}^{2}}}s^{2}}},}
and, after substitution, expression equal to
h
(
s
)
=
1
1
+
r
c
(
m
+
1
/
m
)
n
⏟
2
ζ
ω
0
=
1
ω
0
q
s
+
r
2
c
2
⏟
1
ω
0
2
s
2
,
{\displaystyle h(s)={\frac {1}{1+\underbrace {\frac {rc(m+1/m)}{n}} _{{\frac {2\zeta }{\omega _{0}}}={\frac {1}{\omega _{0}q}}}s+\underbrace {r^{2}c^{2}} _{\frac {1}{{\omega _{0}}^{2}}}s^{2}}},}
which shows how every
(
r
,
c
)
{\displaystyle (r,c)}
combination comes
(
m
,
n
)
{\displaystyle (m,n)}
combination provide same
f
0
{\displaystyle f_{0}}
,
q
{\displaystyle q}
low-pass filter. similar design approach used other filters below.
input impedance
the input impedance of second-order unity-gain sallen–key low-pass filter of interest designers. given eq. (3) in cartwright , kaminsky as
z
(
s
)
=
r
1
s
′
2
+
s
′
/
q
+
1
s
′
2
+
s
′
k
/
q
,
{\displaystyle z(s)=r_{1}{\frac {s ^{2}+s /q+1}{s ^{2}+s k/q}},}
where
s
′
=
s
ω
0
{\displaystyle s ={\frac {s}{\omega _{0}}}}
,
k
=
r
1
r
1
+
r
2
=
m
m
+
1
/
m
{\displaystyle k={\frac {r_{1}}{r_{1}+r_{2}}}={\frac {m}{m+1/m}}}
.
furthermore,
q
>
1
−
k
2
2
{\displaystyle q>{\sqrt {\frac {1-k^{2}}{2}}}}
, there minimal value of magnitude of impedance, given eq. (16) of cartwright , kaminsky, states that
|
z
(
s
)
|
min
=
r
1
1
−
(
2
q
2
+
k
2
−
1
)
2
2
q
4
+
k
2
(
2
q
2
+
k
2
−
1
)
2
+
2
q
2
q
4
+
k
2
(
2
q
2
+
k
2
−
1
)
.
{\displaystyle |z(s)|_{\text{min}}=r_{1}{\sqrt {1-{\frac {(2q^{2}+k^{2}-1)^{2}}{2q^{4}+k^{2}(2q^{2}+k^{2}-1)^{2}+2q^{2}{\sqrt {q^{4}+k^{2}(2q^{2}+k^{2}-1)}}}}}}.}
fortunately, equation well-approximated by
|
z
(
s
)
|
min
≈
r
1
1
q
2
+
k
2
+
0.34
{\displaystyle |z(s)|_{\text{min}}\approx r_{1}{\sqrt {\frac {1}{q^{2}+k^{2}+0.34}}}}
for
0.25
≤
k
≤
0.75
{\displaystyle 0.25\leq k\leq 0.75}
.
k
{\displaystyle k}
values outside of range, 0.34 constant has modified minimal error.
also, frequency @ minimal impedance magnitude occurs given eq. (15) of cartwright , kaminsky, i.e.,
ω
min
=
ω
0
q
2
+
q
4
+
k
2
(
2
q
2
+
k
2
−
1
)
2
q
2
+
k
2
−
1
.
{\displaystyle \omega _{\text{min}}=\omega _{0}{\sqrt {\frac {q^{2}+{\sqrt {q^{4}+k^{2}(2q^{2}+k^{2}-1)}}}{2q^{2}+k^{2}-1}}}.}
this equation can approximated using eq. (20) of cartwright , kaminsky, states that
ω
min
≈
ω
0
2
q
2
2
q
2
+
k
2
−
1
.
{\displaystyle \omega _{\text{min}}\approx \omega _{0}{\sqrt {\frac {2q^{2}}{2q^{2}+k^{2}-1}}}.}
^ stop-band limitations of sallen–key low-pass filter.
^ cartwright, k. v.; e. j. kaminsky (2013). finding minimum input impedance of second-order unity-gain sallen-key low-pass filter without calculus (pdf). lat. am. j. phys. educ. 7 (4): 525–535.
Comments
Post a Comment