Construction Fubini–Study metric
1 construction
1.1 metric quotient
1.2 in local affine coordinates
1.3 homogeneous coordinates
1.4 n = 1 case
construction
the fubini–study metric arises naturally in quotient space construction of complex projective space.
specifically, 1 may define cp space consisting of complex lines in c, i.e., quotient of c\{0} equivalence relation relating complex multiples of each point together. agrees quotient diagonal group action of multiplicative group c = c \ {0}:
c
p
n
=
{
z
=
[
z
0
,
z
1
,
…
,
z
n
]
∈
c
n
+
1
∖
{
0
}
}
/
{
z
∼
c
z
,
c
∈
c
∗
}
.
{\displaystyle \mathbf {cp} ^{n}=\left\{\mathbf {z} =[z_{0},z_{1},\ldots ,z_{n}]\in {\mathbf {c} }^{n+1}\setminus \{0\}\,\right\}/\{\mathbf {z} \sim c\mathbf {z} ,c\in \mathbf {c} ^{*}\}.}
this quotient realizes c\{0} complex line bundle on base space cp. (in fact so-called tautological bundle on cp.) point of cp identified equivalence class of (n+1)-tuples [z0,...,zn] modulo nonzero complex rescaling; zi called homogeneous coordinates of point.
furthermore, 1 may realize quotient in 2 steps: since multiplication nonzero complex scalar z = r e can uniquely thought of composition of dilation modulus r followed counterclockwise rotation origin angle
θ
{\displaystyle \theta }
, quotient c → cp splits 2 pieces.
c
n
+
1
∖
{
0
}
⟶
(
a
)
s
2
n
+
1
⟶
(
b
)
c
p
n
{\displaystyle \mathbf {c} ^{n+1}\setminus \{0\}{\stackrel {(a)}{\longrightarrow }}s^{2n+1}{\stackrel {(b)}{\longrightarrow }}\mathbf {cp} ^{n}}
where step (a) quotient dilation z ~ rz r ∈ r, multiplicative group of positive real numbers, , step (b) quotient rotations z ~ ez.
the result of quotient in (a) real hypersphere s defined equation |z| = |z0| + ... + |zn| = 1. quotient in (b) realizes cp = s/s, s represents group of rotations. quotient realized explicitly famous hopf fibration s → s → cp, fibers of among great circles of
s
2
n
+
1
{\displaystyle s^{2n+1}}
.
as metric quotient
when quotient taken of riemannian manifold (or metric space in general), care must taken ensure quotient space endowed metric well-defined. instance, if group g acts on riemannian manifold (x,g), in order orbit space x/g possess induced metric,
g
{\displaystyle g}
must constant along g-orbits in sense element h ∈ g , pair of vector fields
x
,
y
{\displaystyle x,y}
must have g(xh,yh) = g(x,y).
the standard hermitian metric on c given in standard basis by
d
s
2
=
d
z
⊗
d
z
¯
=
d
z
0
⊗
d
z
0
¯
+
⋯
+
d
z
n
⊗
d
z
n
¯
{\displaystyle ds^{2}=d\mathbf {z} \otimes d{\overline {\mathbf {z} }}=dz_{0}\otimes d{\overline {z_{0}}}+\cdots +dz_{n}\otimes d{\overline {z_{n}}}}
whose realification standard euclidean metric on r. metric not invariant under diagonal action of c, unable directly push down cp in quotient. however, metric invariant under diagonal action of s = u(1), group of rotations. therefore, step (b) in above construction possible once step (a) accomplished.
the fubini–study metric metric induced on quotient cp = s/s,
s
2
n
+
1
{\displaystyle s^{2n+1}}
carries so-called round metric endowed upon restriction of standard euclidean metric unit hypersphere.
in local affine coordinates
corresponding point in cp homogeneous coordinates (z0,...,zn), there unique set of n coordinates (z1,…,zn) such that
[
z
0
,
…
,
z
n
]
∼
[
1
,
z
1
,
…
,
z
n
]
,
{\displaystyle [z_{0},\dots ,z_{n}]{\sim }[1,z_{1},\dots ,z_{n}],}
provided z0 ≠ 0; specifically, zj = zj/z0. (z1,…,zn) form affine coordinate system cp in coordinate patch u0 = {z0 ≠ 0}. 1 can develop affine coordinate system in of coordinate patches ui = {zi ≠ 0} dividing instead zi in obvious manner. n+1 coordinate patches ui cover cp, , possible give metric explicitly in terms of affine coordinates (z1,…,zn) on ui. coordinate derivatives define frame
{
∂
1
,
…
,
∂
n
}
{\displaystyle \{\partial _{1},\ldots ,\partial _{n}\}}
of holomorphic tangent bundle of cp, in terms of fubini–study metric has hermitian components
h
i
j
¯
=
h
(
∂
i
,
∂
¯
j
)
=
(
1
+
|
z
|
2
)
δ
i
j
¯
−
z
¯
i
z
j
(
1
+
|
z
|
2
)
2
.
{\displaystyle h_{i{\bar {j}}}=h(\partial _{i},{\bar {\partial }}_{j})={\frac {(1+|\mathbf {z} |^{2})\delta _{i{\bar {j}}}-{\bar {z}}_{i}z_{j}}{(1+|\mathbf {z} |^{2})^{2}}}.}
where |z| = |z1|+...+|zn|. is, hermitian matrix of fubini–study metric in frame is
(
h
i
j
¯
)
=
1
(
1
+
|
z
|
2
)
2
[
1
+
|
z
|
2
−
|
z
1
|
2
−
z
¯
1
z
2
⋯
−
z
¯
1
z
n
−
z
¯
2
z
1
1
+
|
z
|
2
−
|
z
2
|
2
⋯
−
z
¯
2
z
n
⋮
⋮
⋱
⋮
−
z
¯
n
z
1
−
z
¯
n
z
2
⋯
1
+
|
z
|
2
−
|
z
n
|
2
]
{\displaystyle {\bigl (}h_{i{\bar {j}}}{\bigr )}={\frac {1}{(1+|\mathbf {z} |^{2})^{2}}}\left[{\begin{array}{cccc}1+|\mathbf {z} |^{2}-|z_{1}|^{2}&-{\bar {z}}_{1}z_{2}&\cdots &-{\bar {z}}_{1}z_{n}\\-{\bar {z}}_{2}z_{1}&1+|\mathbf {z} |^{2}-|z_{2}|^{2}&\cdots &-{\bar {z}}_{2}z_{n}\\\vdots &\vdots &\ddots &\vdots \\-{\bar {z}}_{n}z_{1}&-{\bar {z}}_{n}z_{2}&\cdots &1+|\mathbf {z} |^{2}-|z_{n}|^{2}\end{array}}\right]}
note each matrix element unitary-invariant: diagonal action
z
↦
e
i
θ
z
{\displaystyle \mathbf {z} \mapsto e^{i\theta }\mathbf {z} }
leave matrix unchanged.
accordingly, line element given by
d
s
2
=
(
1
+
|
z
|
2
)
|
d
z
|
2
−
(
z
¯
⋅
d
z
)
(
z
⋅
d
z
¯
)
(
1
+
|
z
|
2
)
2
=
(
1
+
z
i
z
¯
i
)
d
z
j
d
z
¯
j
−
z
¯
j
z
i
d
z
j
d
z
¯
i
(
1
+
z
i
z
¯
i
)
2
.
{\displaystyle {\begin{aligned}ds^{2}&={\frac {(1+|\mathbf {z} |^{2})|d\mathbf {z} |^{2}-({\bar {\mathbf {z} }}\cdot d\mathbf {z} )(\mathbf {z} \cdot d{\bar {\mathbf {z} }})}{(1+|\mathbf {z} |^{2})^{2}}}\\&={\frac {(1+z_{i}{\bar {z}}^{i})dz_{j}d{\bar {z}}^{j}-{\bar {z}}^{j}z_{i}dz_{j}d{\bar {z}}^{i}}{(1+z_{i}{\bar {z}}^{i})^{2}}}.\end{aligned}}}
in last expression, summation convention used sum on latin indices i,j range 1 n.
the metric can derived following kähler potential:
k
=
ln
(
1
+
δ
i
j
∗
z
i
z
¯
j
∗
)
{\displaystyle k=\ln(1+\delta _{ij^{*}}z^{i}{\bar {z}}^{j^{*}})}
as
g
i
j
∗
=
k
i
j
∗
=
∂
2
∂
z
i
∂
z
¯
j
∗
k
{\displaystyle g_{ij^{*}}=k_{ij^{*}}={\frac {\partial ^{2}}{\partial z^{i}\partial {\bar {z}}^{j^{*}}}}k}
homogeneous coordinates
an expression possible in homogeneous coordinates z = [z0,...,zn]. formally, subject suitably interpreting expressions involved, 1 has
d
s
2
=
|
z
|
2
|
d
z
|
2
−
(
z
¯
⋅
d
z
)
(
z
⋅
d
z
¯
)
|
z
|
4
=
z
α
z
¯
α
d
z
β
d
z
¯
β
−
z
¯
α
z
β
d
z
α
d
z
¯
β
(
z
α
z
¯
α
)
2
=
2
z
[
α
d
z
β
]
z
¯
[
α
d
z
¯
β
]
(
z
α
z
¯
α
)
2
.
{\displaystyle {\begin{aligned}ds^{2}&={\frac {|\mathbf {z} |^{2}|d\mathbf {z} |^{2}-({\bar {\mathbf {z} }}\cdot d\mathbf {z} )(\mathbf {z} \cdot d{\bar {\mathbf {z} }})}{|\mathbf {z} |^{4}}}\\&={\frac {z_{\alpha }{\bar {z}}^{\alpha }dz_{\beta }d{\bar {z}}^{\beta }-{\bar {z}}^{\alpha }z_{\beta }dz_{\alpha }d{\bar {z}}^{\beta }}{(z_{\alpha }{\bar {z}}^{\alpha })^{2}}}\\&={\frac {2z_{[\alpha }dz_{\beta ]}{\overline {z}}^{[\alpha }{\overline {dz}}^{\beta ]}}{\left(z_{\alpha }{\overline {z}}^{\alpha }\right)^{2}}}.\end{aligned}}}
here summation convention used sum on greek indices α β ranging 0 n, , in last equality standard notation skew part of tensor used:
z
[
α
w
β
]
=
1
2
(
z
α
w
β
−
z
β
w
α
)
.
{\displaystyle z_{[\alpha }w_{\beta ]}={\frac {1}{2}}\left(z_{\alpha }w_{\beta }-z_{\beta }w_{\alpha }\right).}
now, expression ds apparently defines tensor on total space of tautological bundle c\{0}. understood tensor on cp pulling along holomorphic section σ of tautological bundle of cp. remains verify value of pullback independent of choice of section: can done direct calculation.
the kähler form of metric is, overall constant normalization,
ω
=
i
∂
∂
¯
log
|
z
|
2
{\displaystyle \omega =i\partial {\overline {\partial }}\log |\mathbf {z} |^{2}}
the pullback of independent of choice of holomorphic section. quantity log|z| kähler scalar of cp.
the n = 1 case
when n = 1, there diffeomorphism
s
2
≅
c
p
1
{\displaystyle s^{2}\cong \mathbb {cp} ^{1}}
given stereographic projection. leads special hopf fibration s → s → s. when fubini–study metric written in coordinates on cp, restriction real tangent bundle yields expression of ordinary round metric of radius 1/2 (and gaussian curvature 4) on s.
namely, if z = x + iy standard affine coordinate chart on riemann sphere cp , x = r cosθ, y = r sinθ polar coordinates on c, routine computation shows
d
s
2
=
re
(
d
z
⊗
d
z
¯
)
(
1
+
|
z
|
2
)
2
=
d
x
2
+
d
y
2
(
1
+
r
2
)
2
=
1
4
(
d
ϕ
2
+
sin
2
ϕ
d
θ
2
)
=
1
4
d
s
u
s
2
{\displaystyle ds^{2}={\frac {\operatorname {re} (dz\otimes d{\overline {z}})}{\left(1+|z|^{2}\right)^{2}}}={\frac {dx^{2}+dy^{2}}{\left(1+r^{2}\right)^{2}}}={\frac {1}{4}}(d\phi ^{2}+\sin ^{2}\phi \,d\theta ^{2})={\frac {1}{4}}ds_{us}^{2}}
where
d
s
u
s
2
{\displaystyle ds_{us}^{2}}
round metric on unit 2-sphere. here φ, θ mathematician s spherical coordinates on s coming stereographic projection r tan(φ/2) = 1, tanθ = y/x. (many physics references interchange roles of φ , θ.)
Comments
Post a Comment