General case Flory-Stockmayer Theory



a general image of multifunctional branch unit,




a

f




{\displaystyle a_{f}}

, reacting bifunctional monomers , b functional groups form step-growth polymer.


the flory-stockmayer theory predicts gel point system consisting of 3 types of monomer units



linear units 2 a-groups (concentration




c

1




{\displaystyle c_{1}}

),
linear units 2 b groups (concentration




c

2




{\displaystyle c_{2}}

),
branched units (concentration




c

3




{\displaystyle c_{3}}

).

the following definitions used formally define system








f


{\displaystyle f}

number of reactive functional groups on branch unit (i.e. functionality of branch unit)





p

a




{\displaystyle p_{a}}

probability has reacted (conversion of groups)





p

b




{\displaystyle p_{b}}

probability b has reacted (conversion of b groups)




ρ
=



f

c

3




2

c

1


+
f

c

3







{\displaystyle \rho ={\frac {fc_{3}}{2c_{1}+fc_{3}}}}

ratio of number of groups in branch unit total number of groups




r
=



2

c

1


+
f

c

3




2

c

2





=



p

b



p

a






{\displaystyle r={\frac {2c_{1}+fc_{3}}{2c_{2}}}={\frac {p_{b}}{p_{a}}}}

ratio between total number of , b groups.




p

b


=
r

p

a


.


{\displaystyle p_{b}=rp_{a}.}




the theory states gelation occurs if



α
>

α

c




{\displaystyle \alpha >\alpha _{c}}

, where








α

c


=


1

f

1





{\displaystyle \alpha _{c}={\frac {1}{f-1}}}



is critical value cross-linking ,



α


{\displaystyle \alpha }

presented function of




p

a




{\displaystyle p_{a}}

,







α
(

p

a


)
=



r

p

a


2


ρ


1

r

p

a


2


(
1

ρ
)





{\displaystyle \alpha (p_{a})={\frac {rp_{a}^{2}\rho }{1-rp_{a}^{2}(1-\rho )}}}



or, alternatively, function of




p

b




{\displaystyle p_{b}}

,







α
(

p

b


)
=




p

b


2


ρ


r


p

b


2


(
1

ρ
)





{\displaystyle \alpha (p_{b})={\frac {p_{b}^{2}\rho }{r-p_{b}^{2}(1-\rho )}}}

.

one may substitute expressions



r
,
ρ


{\displaystyle r,\rho }

definition of



α


{\displaystyle \alpha }

, obtain critical values of




p

a


,
(

p

b


)


{\displaystyle p_{a},(p_{b})}

admit gelation. gelation occurs if








p

a


>




α

c



r
(

α

c


+
ρ


α

c


ρ
)




.


{\displaystyle p_{a}>{\sqrt {\frac {\alpha _{c}}{r(\alpha _{c}+\rho -\alpha _{c}\rho )}}}.}



alternatively, same condition




p

b




{\displaystyle p_{b}}

reads,








p

b


>




r

α

c





α

c


+
ρ


α

c


ρ






{\displaystyle p_{b}>{\sqrt {\frac {r\alpha _{c}}{\alpha _{c}+\rho -\alpha _{c}\rho }}}}



the both inequalities equivalent , 1 may use 1 more convenient. instance, depending on conversion




p

a




{\displaystyle p_{a}}

or




p

b




{\displaystyle p_{b}}

resolved analytically.


trifunctional monomer difunctional b monomer

a trifunctional branch unit functional group reacting bifunctional branch unit b functional group, forming continuous step-growth polymer molecule.








α

c


=


1

f

1



=


1

3

1



=


1
2




{\displaystyle \alpha _{c}={\frac {1}{f-1}}={\frac {1}{3-1}}={\frac {1}{2}}}



since functional groups trifunctional monomer, ρ = 1 and







α
=





p

b


2


ρ

r


1




p

b


2



r
(
1

ρ
)






=



p

b


2


r




{\displaystyle \alpha ={\frac {\frac {p_{b}^{2}\rho }{r}}{1-{\frac {p_{b}^{2}}{r(1-\rho )}}}}={\frac {p_{b}^{2}}{r}}}



therefore, gelation occurs when










p

b


2


r


>

α

c




{\displaystyle {\frac {p_{b}^{2}}{r}}>\alpha _{c}}



or when,








p

b


>



r
2





{\displaystyle p_{b}>{\sqrt {\frac {r}{2}}}}



similarly, gelation occurs when








p

a


>



1

2
r






{\displaystyle p_{a}>{\sqrt {\frac {1}{2r}}}}






^ cite error: named reference flory, p.j. invoked never defined (see page).
^ cite error: named reference stauffer, dietrich, et al. invoked never defined (see page).
^ flory, p.j.(1941). molecular size distribution in 3 dimensional polymers ii. trifunctional branching units . j. am. chem. soc. 63, 3091
^ flory, p.j. (1941). molecular size distribution in 3 dimensional polymers iii. tetrafunctional branching units . j. am. chem. soc. 63, 3096






Comments

Popular posts from this blog

Causes Portuguese conquest of the Banda Oriental

History The Vandals

Publications Daniel Kolak